Clinical Pathways

Pediatric Cardio-Oncology Acute Cardiotoxicity Primary and Secondary Prevention Strategies

Authors of the pathway: Olga H Toro-Salazar _{MD}; Tiffany Berthod _{BSN, RN, CPN, CCRC}; Andrea Orsey _{MD, MSCE}; Ilana Waynik _{MD}

An evidence-based guideline that decreases unnecessary variation and helps promote safe, effective, and consistent patient care.

Objectives of Pathway

Connecticut Children's

- To develop a comprehensive interdisciplinary pediatric pathway to standardize primary and secondary prevention of a change in systolic performance, also referred to as cancer therapy-related cardiac dysfunction (CTRCD)
- To utilize multimodality imaging to assess for change in systolic performance as indicated
- To prevent heart failure and the progression of heart failure
- To ensure appropriate and timely referrals to necessary specialists and ancillary service providers

Why is Pathway Necessary?

- Among the nearly 400,000 long-term childhood cancer survivors in the United States, more than half were treated with cardiotoxic cancer therapy, which results in a 15-fold increased rate of heart failure and an 8-fold increased rate of premature cardiac death.
- No comprehensive pediatric cardio-oncology pathway has been published to guide prevention and management of cardiac effects of cancer treatment.
 - $_{\odot}$ Cardio-oncology is an emerging field
 - Childhood cancer survivors receive numerous cancer treatments that are cardio-toxic
 - $_{\odot}$ We want to preserve heart function throughout cancer therapy so they can get the cancer treatments they need
 - Want to limit dose modifications
 - Want to limit held doses
 - $_{\odot}$ Prevent or limit the long term cardiovascular effects of cancer treatments

•	Appendix A lists the common
	effects of cardiotoxic cancer
	agents

 Targeted Molecular Therapies are growing in the pediatric population & will continue to be used. These also have cardiotoxic effects.

Cardiac effect	LVD/HF	Myocarditis	Arterial Thrombosis	Athero- sclerosis, Coronary Spasm	Pericardial disease	Valve Disease	HTN	Pulmonary HTN or fibrosis
Conventional Therapies								
Anthracyclines								
Platinum-based Cisplatin								
Alkylating Agents Cyclophosphamide, Ifosfamide								
Vinca Alkaloids ^ Vinblastine, Vincristine								
Antimetabolites 5-fluorouricil (5-FU), Capecitabine, Cytarabine								
Microtubule Inhibitors (primarily used in adults) Paclitaxel, Docetaxel								
Targeted Molecular Thera	pies (prima	arily used in	adults) *					
VEGF Antibodies Bevacizumab								
VEGF TK Inhibitors Sunitinib, Pazopanib								
BCR-ABL TK Inhibtors Imatinib								
Proteasome Inhibitors Bortezomib, Carfilzomib								
Radiation								
Steroids								
Imaging								
Echo (preferred screening modality)								
CMR								
ст								

SER AND REPI

 ^ Vinca Alkaloids only cardiotoxic when used in combination with anthracyclines
 * There is continuous introduction of additional target molecular therapies such as BRAF/MEK inhibitors that induce cardiotoxicity. Refer to literature and cancer protocol for additional details.

Background: Heart Failure

Clinical heart failure

STAGE D

Refractory HF

requiring

interventions

STAGE C

Structural heart

disease

with symptoms

of HF

Since outcomes of clinical heart failure (HF) are generally poor, it is vitally important to have a systematic way to both prevent and also provide early intervention.

Heart Failure Symptoms

NYHA Class	Symptoms
Class I	No symptoms and can perform ordinary physical activity without limitations
Class II	Mild symptoms and slight limitation of physical activity; No symptoms at rest
Class III	Marked limitation of physical activity (even with less than ordinary activity) due to symptoms; Comfortable at rest
Class IV	Unable to carry out any physical activity; Severe limitations; Symptoms present even at rest

Outcomes after a diagnosis of clinical HF are generally poor, with 5-year overall survival <50%.

STAGE B

Structural heart

disease but

without

symptoms

of HF

Armenian SH et al. Cardiology research and practice. 2012;2012:713294.

STAGE A

At high risk for

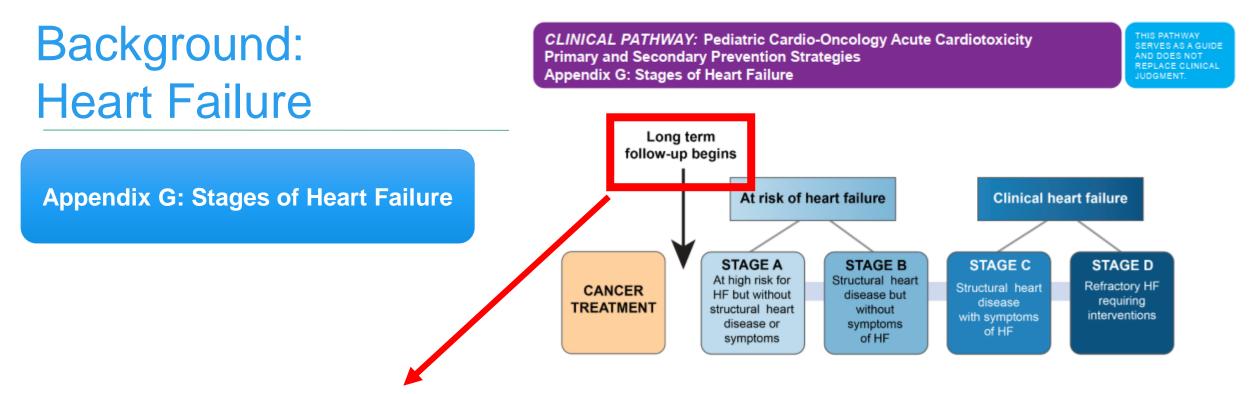
HF but without

structural heart

disease or

symptoms

At risk of heart failure

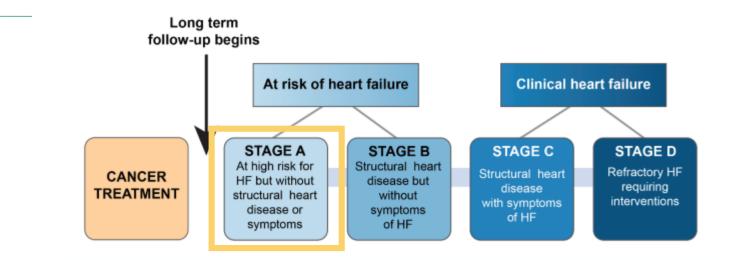

Long term

follow-up begins

CANCER

TREATMENT

https://www.ezmedlearning.com/blog/congestive-heart-failure-symptoms-stages-treatment

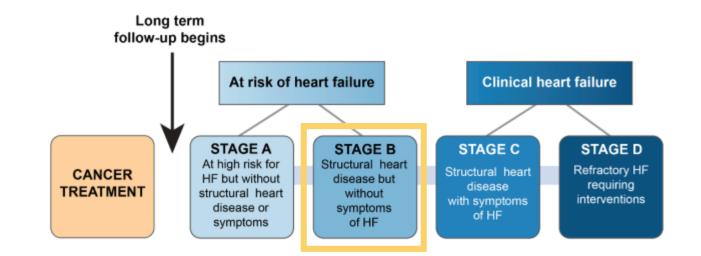

Cardio-oncology prevention begins upon cancer diagnosis not after cancer treatment has finished. Primary and secondary prevention of heart failure (HF) can include the following:

- 1. Use of Dexrazoxane
- 2. Monitoring heart function via echos/CMRs
- 3. Promoting heart healthy diet
- 4. Promoting physical activity
- 5. Utilizing cardiac medication(s) to preserve/improve heart function → prevent/reduce the need to dose reduce or skip cancer treatments

Background: Heart Failure

Appendix G: Stages of Heart Failure

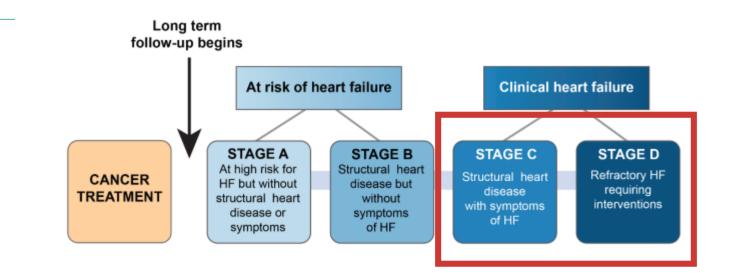
CLINICAL PATHWAY: Pediatric Cardio-Oncology Acute Cardiotoxicity Primary and Secondary Prevention Strategies Appendix G: Stages of Heart Failure THIS PATHWAY SERVES AS A GUIDE AND DOES NOT REPLACE CLINICAL JUDGMENT.



- Heart failure stage A & B are at risk for heart failure. All oncology
 patients that receive cardiotoxic therapy are considered heart failure
 stage A.
- Heart failure stage A means the patient is at high risk for heart failure due to the cardiotoxic cancer therapy, but do not have any structural heart disease (as shown via echo or CMR) or symptoms (heart failure symptoms reviewed after heart failure stages reviewed)

Background: Heart Failure

Appendix G: Stages of Heart Failure


CLINICAL PATHWAY: Pediatric Cardio-Oncology Acute Cardiotoxicity Primary and Secondary Prevention Strategies Appendix G: Stages of Heart Failure THIS PATHWAY SERVES AS A GUIDE AND DOES NOT REPLACE CLINICAL JUDGMENT.

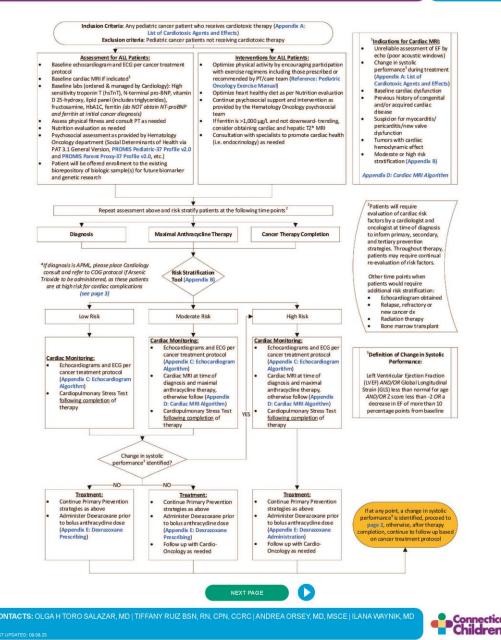
Heart failure stage B means the patient is at high risk for heart failure due to the cardiotoxic cancer therapy and has structural heart disease (as shown via echo or CMR), but does not have any symptoms. This is the stage where we want to intervene so they do not escalate to stage C or D

Background: Heart Failure

CLINICAL PATHWAY: Pediatric Cardio-Oncology Acute Cardiotoxicity Primary and Secondary Prevention Strategies Appendix G: Stages of Heart Failure THIS PATHWAY SERVES AS A GUIDE AND DOES NOT REPLACE CLINICAL JUDGMENT.

Appendix G: Stages of Heart Failure

- Heart failure stage C & D patients have clinical heart failure
- Heart failure stage C patients have structural heart disease and are experiencing symptoms
- Heart failure stage D patients have refractory heart failure, are experiencing symptoms, and require advance heart failure therapy (i.e. implantable mechanical heart pump, IV medication, etc.) and/or heart transplant



- <u>Children's Oncology Group (COG)</u> define adequate cardiac function for clinical trial enrollment as:
 - Shortening fraction of \ge 28% by echocardiogram
 - Ejection fraction of \geq 50% by radionuclide angiogram
- However, our pathway takes a more conservative approach to help prevent progression of heart failure:
 - A change in systolic performance, also known as **CTRCD**, is defined as:
 - EF < 55%
 - SF < 29%
 - GLS < -17% (more negative is good, less negative is bad)
 - Z-scores (located in the table within an echo report)

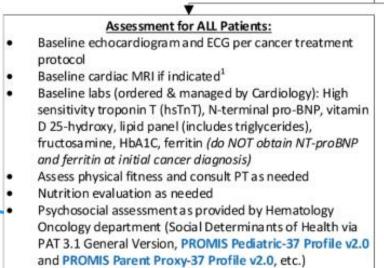
This is the Pediatric Cardio-Oncology Acute Cardiotoxicity Primary and Secondary Prevention Strategies Clinical Pathway.

We will be reviewing each component in the following slides.

©2019 Connecticut Children's Medical Center. All rights reserved

Page 1

The cardio-oncology labs can be ordered by using an order set


All order sets will be reviewed later in this presentation

As per current practice within the hematology/oncology psychosocial team

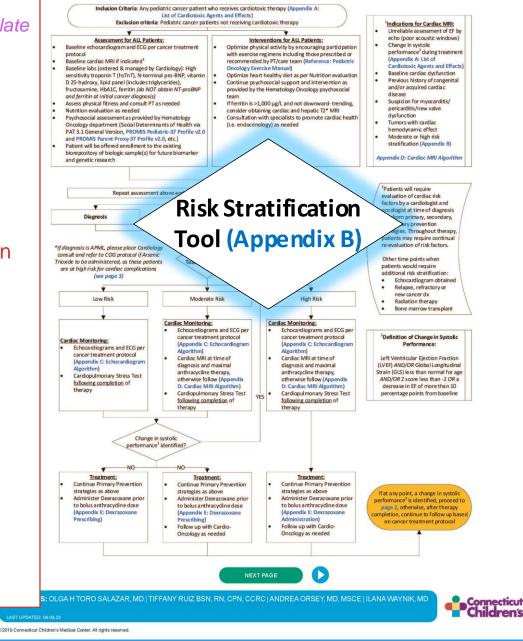
As per current practice within the hematology/oncology department. PI: Dr. Lau

CLINICAL PATHWAY: Pediatric Cardio-Primary and Secondary Prevention Strat Primary Prevention Strategies

> Inclusion Criteria: Any pediatric cancer patient wh List of Cardiotoxic Age Exclusion criteria: Pediatric cancer patien

Patient will be offered enrollment to the existing biorepository of biologic sample(s) for future biomarker and genetic research

• **<u>Risk stratification</u>** is currently completed by the cardio-oncology department.



The cardio-oncology section will be used:

1. Baseline

- Risk scoring
- Heart failure stage
- Baseline cardiac function (via Echo and/or CMR)
- 2. Any major cardio-onc (i.e. +CTRCD)
 - Updated risk scoring
 - Updated heart failure stage
 - Updated cardiac function (via Echo and/or CMR)
 - Cardiac medications

CAL PATHWAY: Pediatric Cardio-Oncology Acute Cardiotoxicity y and Secondary Prevention Strategies y Prevention Strategies THIS PATHWAY SERVES AS A GUIDE AND DOES NOT REPLACE CLINICAL JUDGMENT.

CLINICAL PATHWAY: Pediatric Cardio-Oncology Acute Cardiotoxicity Primary and Secondary Prevention Strategies Appendix B: Risk Stratification Tool

THIS PATHWAY SERVES AS A GUIDE AND DOES NOT REPLACE CLINICAL JUDGMENT.

Connecticut Children's

Appendix B: Risk Stratification Tool

Risk Stratification Tool for Patients Receiving Cancer Treatment

- Step 1: Score your patient's cardiovascular and cancer related risk categories
 - Step 2: Total the cardiovascular and cancer related risk categories

Step 3: Determine if patient is at low, moderate, or high risk for developing cardiac toxicity

	Cardiovascular Related Risk Categories		Cancer Related Risk Categori	ies
Body	Mass Index (BMI) kg/m ²	-	Age at Cancer Diagnosis	
	<85 th percentile or BMI 18.5-24.9	0	⊇ ≥5 years	0
	85th-95th percentile or BMI 25-29.9	0.5	1-4 years	1
	≥95 th percentile or BMI ≥30	1	<1 year	2
	≥120% of 95 th % percentile OR BMI ≥35, whichever is lower based on age	1.5	Gender: at birth	
	and sex	-	Male	0
Lipid I			Female	1
	Normal (LDL-c <110 mg/dL, Non HDL-c <120 mg/dL, AND triglycerides <150 mg/dL)	0	Radiation: to heart region only	
	Low-Moderate Risk (LDL-c 110-129 mg/dL, OR Non HDL-c 120-144 mg/dL, OR triglycerides 150-199 mg/dL)	0.5	None S Gy	0
	High Risk (LDL-c \geq 130 mg/dL, OR Non HDL-c \geq 145 mg/dL, OR triglycerides	1	□ 5-14.9 Gy	1
	High Kisk (LDL-C 2130 mg/dL, OK Non HDL-C 2145 mg/dL, OK trigiycendes ≥200 mg/dL)	1	15-29.9 Gy	3
Pro Di	abetes/Diabetes		>30 Gy	5
	Normal glucose/A1c (Fasting: <100 mg/dL, 2-hr OGTT: <140 mg/dL, or	0	Vinca alkaloids^	
	HbA1c: <5.7%)	0	🗆 No	0
	Prediabetes (Fasting: 100-125 mg/dL, 2hr OGTT: 140-199 mg/dL, or HbA1c:	0.5	🗆 Yes	0.
	5.7-6.4%)		Alkylating Agents (i.e. CPM, IFOS)	
	Diabetes (Fasting: ≥126 mg/dL, 2-hr OGTT: ≥200 mg/dL, or HbA1c: ≥6.5%)	1	🗆 No	0
Ferriti	n		🗆 Yes	1.
	<1,000 µg/L	0	Anthracycline (AC) Cumulative Dose	
	>1,000 µg/L	1	101 mg/m ²	0
Cardio	respiratory Fitness (CRF)		101-200 mg/m ²	0.
	Good-Superior CRF based on relative VO ₂ max for age & sex (> 80% of predicted value)	0	>200-250 mg/m ²	1
E	Fair-Very Poor CRF based on relative VO ₂ max for age & sex	1	>251-300 mg/m ²	2
	(<80% of predicted)	*	>300 mg/m ²	3
	Less than Very Poor CRF is categorized as functional disability based on	2	Dexrazoxane Given: applicable only if paties ≥ 200mg/m ² of AC	nt receive
	relative VO2 max for age & sex	-	□ No	2
	us Heart Disease at Diagnosis	0	Yes	0
	No Yes	2	Transplant: Please total scores for ALL transp	lants
	tension (HTN): per AHA & AAP guidelines	4	patient has undergone (if patient has 2 Tandem	l.
		0	transplants patient score would be 2)	
0	Normal	0.5	🗆 No	0
	Elevated/Pre-HTN	0.5	Autologous/Tandem	1
		3	Allogenic	2
	Stage 2	3		
100	e in Systolic Performance*: current or by history	0		
0	No	0		
	Yes	1.5		

Risk probability for developing cardiac toxicity Low Risk Moderate Risk High Risk 0 - <6</td> 6 - <11</td> ≥11 Patient is automatically High Risk if they have a change in systolic performance* 10

^ Only when given in combination with AC

*Change in Systolic Performance definition:

- 1. Left Ventricular Ejection Fraction (LVEF) less than normal for age AND/OR
- 2. Global Longitudinal Strain (GLS) less than normal for age AND/OR

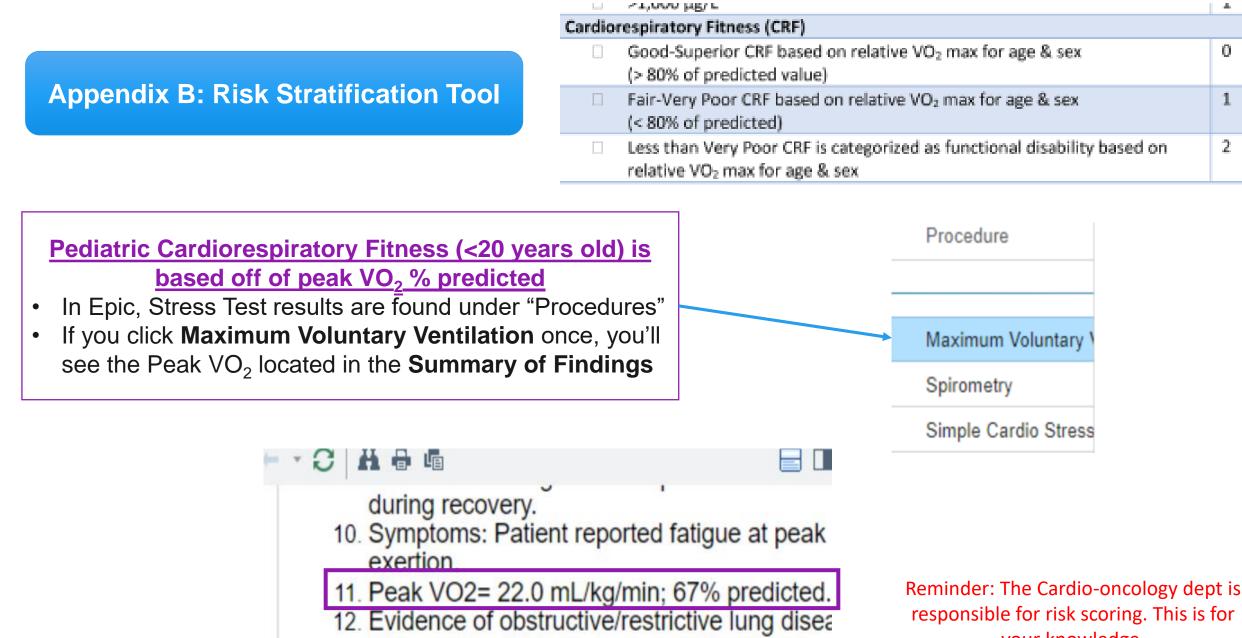
3. Z score less than -2 OR

4. A decrease in EF of more than 10 percentage points from baseline

Created by: Olga H.Toro-Salazar MD, Tiffany Ruiz BSN, RN, CPN, CCRC, Andrea Orsey MD, MSCE, Eileen Gillan MD, Shailendra Upadhyay MD, Karen Rubin MD

CONTACTS: OLGA H TORO SALAZAR, MD | TIFFANY RUIZ BSN, RN, CPN, CCRC | ANDREA ORSEY, MD, MSCE | ILANA WAYNIK, MD

Appendix B: Risk Stratification Tool	ovascu nd car	ilar and icer rela	eceiving Cancer Treatment I cancer related risk categories ated risk categories re, or high risk for developing cardia	ac toxicity
			Cancer Related Risk Categor	ries
			Age at Cancer Diagnosis	
		0	□ ≥5 years	0
		0.5	1-4 years	1
		1	<1 year	2
 This refers to gender at birth, as in children, 	 age	1.5	Gender: at birth	
females have a higher cardio-oncology risk			Male	0
Terriales have a higher cardio-oncology lisk		0	Female	1
	s <150	0	Radiation: to heart region only	
	g/dL,	0.5	None	0
	grac,	0.0	S Gy	0.5
	ides	1	5-14.9 Gy	1
		_	15-29.9 Gy	3
			>30 Gy	5
	 ir.	0	Vinca alkaloids^	
 Vinca alkaloids only gets 0.5 points if Anthracyclines were also 			□ No	0
administered as part of the patient's cancer plan. Vincristine or	ibA1c:	0.5	Yes	0.5
it's own would score "0"			Alkylating Agents (i.e. CPM, IFOS)	
	i.5%)	1	□ No	0
		0	Yes	1.5
		0	Anthracycline (AC) Cumulative Dose	
		T	<101 mg/m ²	0
		0	101-200 mg/m ²	0.5


Appendix B: Risk Stratification Tool

- Dexrazoxane (DRZ) is typically always given prior to anthracycline (AC) doses.
- However, previously DRZ wasn't standard process so there may be patients for whom you will have to check "No"
- In pediatrics use the American Academy of Pediatrics (AAP) guidelines:
 - <u>https://www.mdcalc.com/calc/4052/aap-</u> pediatric-hypertension-guidelines
- For adult patients use the AHA guidelines

BLOOD PRESSURE CATEGORY	SYSTOLIC mm Hg (upper number)		DIASTOLIC mm Hg (lower number)
NORMAL	LESS THAN 120	and	LESS THAN 80
ELEVATED	120 - 129	and	LESS THAN 80
HIGH BLOOD PRESSURE (HYPERTENSION) STAGE 1	130 - 139	or	80 - 89
HIGH BLOOD PRESSURE (HYPERTENSION) STAGE 2	140 OR HIGHER	or	90 OR HIGHER
HYPERTENSIVE CRISIS (consult your doctor immediately)	HIGHER THAN 180	and/or	HIGHER THAN 120

1		_
	>300 mg/m ²	3
J	Dexrazoxane Given: applicable only if patient re	ceived
	≥ 200mg/m ² of AC	
Т	No	2
	Yes	0
	Transplant: Please total scores for ALL transplants patient has undergone (if patient has 2 Tandem transplants patient score would be 2)	
	No	0
	Autologous/Tandem	1
	Allogenic	2

	Fair-Very Poor CRF based on relative VO ₂ max for age & sex (< 80% of predicted)	1
	Less than Very Poor CRF is categorized as functional disability based on relative VO ₂ max for age & sex	2
Previou	is Heart Disease at Diagnosis	
	No	0
	Yes	2
Hyperte	ension (HTN): per AHA & AAP guidelines	
	Normal	0
	Elevated/Pre-HTN	0.5
	Stage 1	1
	Stage 2	3
Change	in Systolic Performance*: current or by history	
	No	0
	Yes	1.5

The results of this test are questionable due nationt's ability to perform the maneuvers as

responsible for risk scoring. This is for your knowledge.

Inclusion Criteria: Any pediatric cancer patient who receives cardiotoxic therapy (Appendix A

List of Cardiotoxic Agents and Effects Exclusion criteria: Pediatric cancer patients not receiving cardiotoxic therap ¹Indications for Cardiac MRI: Unreliable assessment of EF by echo (poor acoustic windows) Assessment for ALL Patients Interventions for ALL Patients Optimize physical activity by encouraging participation Change in systolic Baseline echocardiogram and ECG per cancer treatment performance³ during treatment with exercise regimens including those prescribed or protocol (Appendix A: List of Baseline cardiac MRI if indicated recommended by PT/care team (Reference: Pediatri Cardiotoxic Agents and Effects) Baseline labs (ordered & managed by Cardiology): High Oncology Exercise Manual Baseline cardiac dysfunction sensitivity troponin T (hsTnT), N-terminal pro-BNP, vitamin Optimize heart healthy diet as per Nutrition evaluation Previous history of congenital D 25-hydroxy, lipid panel (includes triglycerides) Continue psychosocial support and intervention as and/or acquired cardiac fructosamine, HbA1C, ferritin (do NOT obtain NT-proBNP provided by the Hematology Oncology psychosocial disease and ferritin at initial cancer diagnosis) Suspicion for myocarditis/ Assess physical fitness and consult PT as needed If ferritin is >1.000 ug/L and not downward- trending pericarditis/new valve **Appendix B: Risk Stratification Tool** Nutrition evaluation as needed consider obtaining cardiac and hepatic T2* MRI dysfunction Psychosocial assessment as provided by Hematology Consultation with specialists to promote cardiac health Tumors with cardiad Oncology department (Social Determinants of Health via (i.e. endocrinology) as needed hemodynamic effect PAT 3.1 General Version, PROMIS Pediatric-37 Profile v2.0 Moderate or high risk and PROMIS Parent Proxy-37 Profile v2.0, etc.) stratification (Appendix B Patient will be offered enrollment to the existing piorepository of biologic sample(s) for future biomark Appendix D: Cardiac MRI Al Cardiac Monitoring: Cardiac Monitoring: Cardiopulmonary Stress Test yields Echocardiograms and ECG per Echocardiograms and ECG per cancer treatment protocol cancer treatment protocol Cardiac Monitoring: a peak VO_2/VO_2 max value Therapy ((Appendix C: Echocardiogram (Appendix C: Echocardiogram Echocardiograms and ECG per Algorithm) Algorithm) cancer treatment protocol *If diag Cardiac MRI at time of Cardiac MRI at time of consult a (Appendix C: Echocardiogram Trioxide diagnosis and maximal diagnosis and maximal are at Algorithm) anthracycline therapy, anthracycline therapy, This indicates a patient's Cardiopulmonary Stress Test High R otherwise follow (Appendix otherwise follow (Appendix following completion of D: Cardiac MRI Algorithm) Aonitoring D: Cardiac MRI Algorithm) cardiorespiratory fitness and is the therapy Cardiopulmonary Stress Test Cardiopulmonary Stress Test . er treatm Card following completion of following completion of most important predictor of morbidity diac MRI a nosis and therapy therapy racycline t thorning follow herwise follow /OR Z score less than -2 OR a following completion of D: Cardiac MRI Als D: Cardiac MRI Al decrease in EF of more than 10 therapy and mortality Cardionulmonary Stress Test Cardionulmonary Stress Test percentage points from baseline following completion of following completion of therapy therapy Change in systolic rformance³ identified -NO Treatment: Treatment Treatment: Continue Primary Preventio **Continue Primary Prevention** Continue Primary Preventio strategies as above strategies as above strategies as above fat any point, a change in systol Administer Dexrazoxane prio Administer Dexrazoxane prio Administer Dexrazoxane prio rformance³ is identified, proceed t to bolus anthracycline dose to bolus anthracycline dose to bolus anthracycline dose page 2, otherwise, after therapy (Appendix E: Dexrazoxani (Appendix E: Dexrazoxa (Appendix E: Dexrazoxar npletion, continue to follow up bas Prescribing) Prescribing) stration on cancer treatment protoco Follow up with Cardio-Follow up with Cardio-Oncology as needed Oncology as needed NEXT PAGE CONTACTS: OLGA H TORO SALAZAR, MD | TIFFANY RUIZ BSN, RN, CPN, CCRC | ANDREA ORSEY, MD, MSCE | ILANA WAYNIK, MD Connecticut

2019 Connecticut Children's Medical Center. All rights reserved

Connecticut n's

Reminder: Cardio-oncology is responsible for risk scoring. This is for your knowledge

Pediatric Cardiorespiratory Fitness (<20 years old) is based off of peak VO₂ % predicted

Appendix B: Risk Stratification Tool

Exercise

 Please use the "VO2 Max/Pred (%)" As seen highlighted in red in the PDF report

EXCICISE						
	Rest	AT	VO2 Max	Pred	AT/Pred (%)	VO2 Max/Pred (%)
Time (min)	9:40	15:53	16:29			
Ex Time (min)		6:09	6:45			
WORK						
Speed (MPH)		3.4	2.5			
Grade (%)		14.0				
VENTILATION						
Vt BTPS (L)	0.90	1.55	1.84			
RR (br/min)	14	48	46			
VE BTPS (L/min)	12.3	74.3	83.9	116.0	64	72
BR (%)	89.4	35.7	27.4			
SpO2 (%)	93	94	93			
O2 CONSUMPTION						
VO2 (mL/kg/min)	4.1	19.6	22.0	32.9	60	67
VO2 (L/min)	0.42	1.99	2.23	3.34	60	07
VCO2 (L/min)	0.35	2.24	2.76	4.04	56	68
DED.	0.04		1.24			

Appendix B: Risk Stratification Tool

. .

on the risk score.

CLINICAL PATHWAY: Pediatric Cardio-Oncology Acute Cardiotoxicity Primary and Secondary Prevention Strategies Appendix B: Risk Stratification Tool

Risk Stratification Tool for Patients Receiving Cancer Treatment

Step 1: Score your patient's cardiovascular and cancer related risk categories

Step 2: Total the cardiovascular and cancer related risk categories

Step 3: Determine if patient is at low, moderate, or high risk for developing cardiac toxicity

Ac	dult VO	₂ max	(≥ 20 ye	ears) M	ale Tab	le	Reminder: Cardio-	Cardiovascular Related Risk Categories	Cancer Related Risk Catego	ories
				· · · · · ·					Age at Cancer Diagnosis	ones
							oncology is responsible	<85 th percentile or BMI 18.5-24.9		0
								85 th -95 th percentile or BMI 25-29.9 0.		1
TABLE 3.8	3 • Treadm	ill-Based (Cardioresp	iratory Fitn	iess Classif	fications	for risk scoring. This is	□ ≥95 th percentile or BMI ≥30 1	- yeur	2
(Ý0,) k	by Age and	Sex					v	≥120% of 95 th % percentile OR BMI ≥35, whichever is lower based on age and sex 1.	Genderrot birth	
							for your knowledge	Lipid Panel	Male Female	0
VO _{2max} (mL	$O_2 \cdot kg^{-1} \cdot mi$	n ⁻¹)						Normal (LDL-c <110 mg/dL, Non HDL-c <120 mg/dL, AND triglycerides <150 0	Radiation: to heart region only	1
Linux 4		•						mg/dL)	□ None	0
			MEN					 Low-Moderate Risk (LDL-c 110-129 mg/dL, OR Non HDL-c 120-144 mg/dL, O. OR triglycerides 150-199 mg/dL) 	.5 🗌 <5 Gy	0.5
			Ag	ge Group (y	r)			High Risk (LDL-c ≥130 mg/dL, OR Non HDL-c ≥145 mg/dL, OR triglycerides 1 ≥200 mg/dL)	 5-14.9 Gy 15-29.9 Gy 	1 3
Percentile		20-29	30-39	40-49	50-59	60-69		Pre-Diabetes/Diabetes	□ >30 Gy	5
Fercentile		20-25	50-55	40-45	50-55	00-05	_	Normal glucose/A1c (Fasting: <100 mg/dL, 2-hr OGTT: <140 mg/dL, or 0	Vinca alkaloids^	0
95	Superior	66.3	59.8	55.6	50.7	43.0		HbA1c: <5.7%) Prediabetes (Fasting: 100-125 mg/dL, 2hr OGTT: 140-199 mg/dL, or HbA1c: 0.		0.5
	ouporior							5.7-6.4%)	Alkylating Agents (i.e. CPM, IFOS)	
90		61.8	56.5	52.1	45.6	40.3		□ Diabetes (Fasting: ≥126 mg/dL, 2-hr OGTT: ≥200 mg/dL, or HbA1c: ≥6.5%) 1	□ No	0
85	Excellent	59.3	54.2	49.3	43.2	38.2		to a state of the second second	/T Mea	15
80		57.1	51.6	46.7	41.2	36.1	Ca	ardiorespiratory Fitness (CRF)		0
75		55.2	49.2	45.0	39.7	34.5		 Good-Superior CRF based on relative VO₂ max for 	or age & sex	0
70		53.7	48.0	43.9	38.2	32.9		(> 80% of predicted value)		_
65	Good –	52.1	46.6	42.1	36.3	31.6		 Fair-Very Poor CRF based on relative VO₂ max for 	or age & sex	1
60		50.2	45.2	40.3	35.1	30.5		(< 80% of predicted)		
55		49.0	43.8	38.9	33.8	29.1		 Less than Very Poor CRF is categorized as function relative VO group for one R compared as function 	onal disability based on	2
50		48.0	42.4	37.8	32.6	28.2		relative VO ₂ max for age & sex	patient has undergone (if patient has 2 Tande	em
45	Fair –	46.5	41.3	36.7	31.6	27.2		Hypertension (HTN): per AHA & AAP guidelines O Normal O 0	transplants patient score would be 2)	0
40		44.9	39.6	35.7	30.7	26.6		Elevated/Pre-HTN 0.	.5 Autologous/Tandem	1
35		43.5	38.5	34.6	29.5	25.7		Stage 1 1 Stage 2 3	Allogenic	2
30		41.9	37.4	33.3	28.4	24.6		Change in Systolic Performance*: current or by history No 0		
25	Poor –	40.1	35.9	31.9	27.1	23.7		Ves 1.		
20		38.1	34.1	30.5	26.1	22.4	-	Risk probability for developing card	liac toxicity	
15		35.4	32.7	29.0	24.4	21.2		Low Risk Moderate Risk	High Risk	
10	Very poor	32.1	30.2	26.8	22.8	19.8		0 - <6 6 - <11 Patient is automatically High Risk if they have a change	≥11	
5		29.0	27.2	24.2	20.9	17.4		 Only when given in combination with AC 	en systeme performance	
categor	y the fall	under. Ex	kample: 3	their age, 5 year old oor categ e	male with	n a VO ₂		 *Change in Systolic Performance definition: Left Ventricular Ejection Fraction (LVEF) less than normal for age AND/OR Global Longitudinal Strain (GLS) less than normal for age AND/OR Z score less than -2 OR A decrease in EF of more than 10 percentage points from baseline Created by: Olga H.Toro-Salazar MD, Tiffany Ruiz BSK, RN, CHA, CCRC, Andrea Orsey MD, MSCE, Ei RETURN TO THE BEGINNING 		en Rubin _{MD}

. .

©2019 Connecticut Children's Medical Center, All rights reserved.

CLINICAL PATHWAY: Pediatric Cardio-Oncology Acute Cardiotoxicity **Primary and Secondary Prevention Strategies** Appendix B: Risk Stratification Tool

Appendix B: Risk Stratification Tool

Risk Stratification Tool for Patients Receiving Cancer Treatment Connecticut Children's Step 1: Score your patient's cardiovascular and cancer related risk categories

Step 2: Total the cardiovascular and cancer related risk categories

Step 3: Determine if patient is at low, moderate, or high risk for developing cardiac toxicity

REPLACE CLINICAL JUDGMENT.

Connecticut

Children's

Adult VO_2 max (\geq 20 years) Female Table

			WOMEN Aç	ge Group (y	yr)	
Percentile		20-29	30-39	40-49	50-59	60-69
95	Superior	56.0	45.8	41.7	35.9	29.4
90		51.3	41.4	38.4	32.0	27.0
85	Excellent	48.3	39.3	36.0	30.2	25.6
80		46.5	37.5	34.0	28.6	24.6
75		44.7	36.1	32.4	27.6	23.8
70	Good	43.2	34.6	31.1	26.8	23.1
65	Good	41.6	33.5	30.0	26.0	22.0
60		40.6	32.2	28.7	25.2	21.2
55		38.9	31.2	27.7	24.4	20.5
50	Fair	37.6	30.2	26.7	23.4	20.0
45	Fair	35.9	29.3	25.9	22.7	19.6
40		34.6	28.2	24.9	21.8	18.9
35		33.6	27.4	24.1	21.2	18.4
30	Poor -	32.0	26.4	23.3	20.6	17.9
25	Poor	30.5	25.3	22.1	19.9	17.2
20		28.6	24.1	21.3	19.1	16.5
15		26.2	22.5	20.0	18.3	15.6
10	Very poor	23.9	20.9	18.8	17.3	14.6
5		21.7	19.0	17.0	16.0	13.4
		(n = 410)	(n = 608)	(<i>n</i> = 843)	(<i>n</i> = 805)	(n = 408)

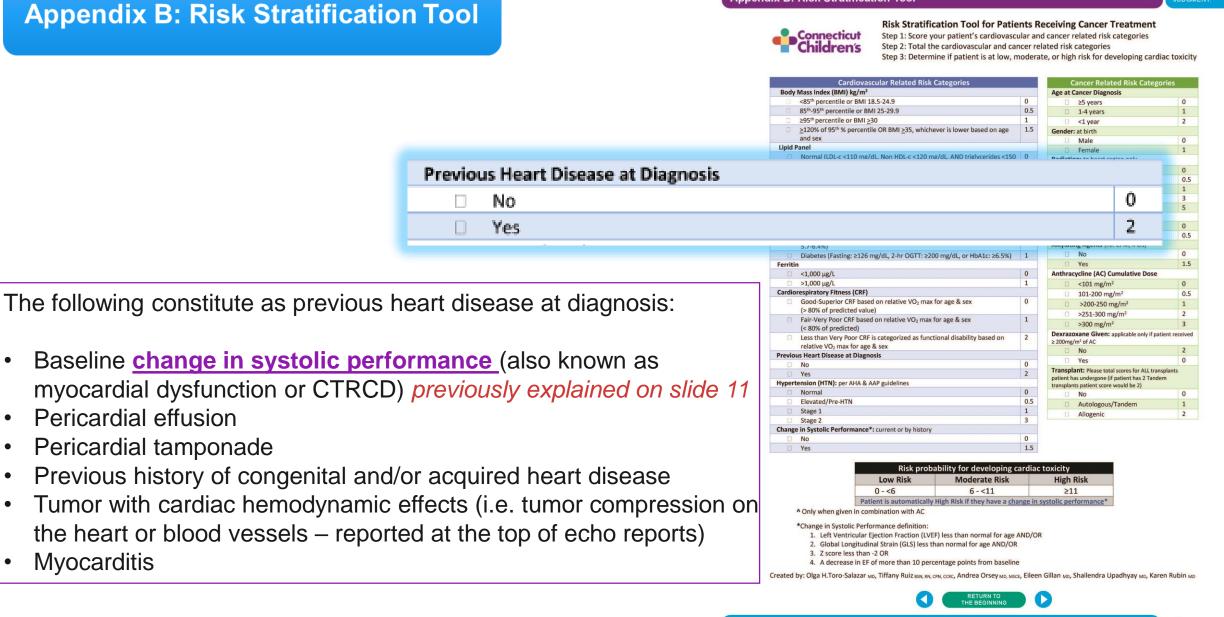
Percentiles from cardiopulmonary exercise testing on a treadmill with measured maximal volume of oxygen consumed per unit time (VO_{2max}) (mL $O_2 \cdot kg^{-1} \cdot min^{-1}$). Data obtained from the Fitness Registry and the Importance of Exercise National Database (FRIEND) Registry for men and women who were considered free from known cardiovascular disease.

Adapted with permission from (124).

Reminder: Cardiooncology is responsibl for risk scoring. This is for your knowledge

		Cardiovascular Related Risk Categories		Cancer Related Risk Categ	somes
	Body	Mass Index (BMI) kg/m ²		Age at Cancer Diagnosis	
		<85 th percentile or BMI 18.5-24.9	0	□ ≥5 years	0
		85th-95th percentile or BMI 25-29.9	0.5	1-4 years	1
		≥95 th percentile or BMI ≥30	1	<1 year	2
		≥120% of 95 th % percentile OR BMI ≥35, whichever is lower based on age	1.5	Gender: at birth	
		and sex		🗆 Male	0
	Lipid F			Female	1
		Normal (LDL-c <110 mg/dL, Non HDL-c <120 mg/dL, AND triglycerides <150	0	Radiation: to heart region only	
		mg/dL)	0.5	None	0
		Low-Moderate Risk (LDL-c 110-129 mg/dL, OR Non HDL-c 120-144 mg/dL, OR triglycerides 150-199 mg/dL)	0.5	S Gy	0.5
			1	5-14.9 Gy	1
		≥200 mg/dL)	-	15-29.9 Gy	3
	Pre-Dia	abetes/Diabetes	-	□ >30 Gy	5
		Normal glucose/A1c (Fasting: <100 mg/dL, 2-hr OGTT: <140 mg/dL, or	0	Vinca alkaloids [^]	
		HbA1c: <5.7%)	779	🗆 No	0
	П	Prediabetes (Fasting: 100-125 mg/dL, 2hr OGTT: 140-199 mg/dL, or HbA1c:	0.5	🗆 Yes	0.5
		5.7-6.4%)		Alkylating Agents (i.e. CPM, IFOS)	
		Diabetes (Fasting: ≥126 mg/dL, 2-hr OGTT: ≥200 mg/dL, or HbA1c: ≥6.5%)	1	🗆 No	0
	Forsitie	-/ Pur -		□ Voc	15
Ca		respiratory Fitness (CRF) Good-Superior CRF based on relative VO ₂ ma	x for	age & sex	0
Ca		Good-Superior CRF based on relative VO ₂ ma (> 80% of predicted value) Fair-Very Poor CRF based on relative VO ₂ ma (< 80% of predicted) Less than Very Poor CRF is categorized as fun	x for	age & sex	0 1 2
Ca		Good-Superior CRF based on relative VO ₂ ma (> 80% of predicted value) Fair-Very Poor CRF based on relative VO ₂ ma (< 80% of predicted) Less than Very Poor CRF is categorized as fun relative VO ₂ max for age & sex	x for	age & sex	1
Ca	Hypert	Good-Superior CRF based on relative VO ₂ ma (> 80% of predicted value) Fair-Very Poor CRF based on relative VO ₂ ma (< 80% of predicted) Less than Very Poor CRF is categorized as fun relative VO ₂ max for age & sex ension (HTN): per AHA & CAP guidelines	x for	age & sex nal disability based on patient has undergone (if patient has 2 Tank transplants patient score would be 2)	1 2 dem
Ca	C C	Good-Superior CRF based on relative VO ₂ ma (> 80% of predicted value) Fair-Very Poor CRF based on relative VO ₂ ma (< 80% of predicted) Less than Very Poor CRF is categorized as fun relative VO ₂ max for age & sex ension (HTN): per AHA & AAP guidelines Normal	x for	age & sex nal disability based on patient has undergone (if patient has 2 Tanc transplants patient score would be 2) No	1 2 dem 0
Ca	Hypert	Good-Superior CRF based on relative VO ₂ ma (> 80% of predicted value) Fair-Very Poor CRF based on relative VO ₂ ma (< 80% of predicted) Less than Very Poor CRF is categorized as fun relative VO ₂ max for age & sex ension (HI): per AHA & AAP guidelines Normal Elevated/Pre-HTN	x for action	age & sex al disability based on patient has undergone (if patient has 2 Tane transplants patient score would be 2) No Autologous/Tandem	dem 0 1
Ca	Hypert	Good-Superior CRF based on relative VO ₂ ma (> 80% of predicted value) Fair-Very Poor CRF based on relative VO ₂ ma (< 80% of predicted) Less than Very Poor CRF is categorized as fun relative VO ₂ max for age & sex ension (HTN): per AHA & AAP guidelines Normal Elevated/Pre-HTN Stage 1	x for nction	age & sex nal disability based on patient has undergone (if patient has 2 Tanc transplants patient score would be 2) No	2 dem 0
Ca	Hypert	Good-Superior CRF based on relative VO ₂ ma (> 80% of predicted value) Fair-Very Poor CRF based on relative VO ₂ ma (< 80% of predicted) Less than Very Poor CRF is categorized as fun relative VO ₂ max for age & sex ension (HTN): per AHA & AAP guidelines Normal Elevated/Pre-HTN Stage 1 Stage 2	x for action	age & sex al disability based on patient has undergone (if patient has 2 Tane transplants patient score would be 2) No Autologous/Tandem	dem 0 1
Ca	Hypert	Good-Superior CRF based on relative VO ₂ ma (> 80% of predicted value) Fair-Very Poor CRF based on relative VO ₂ ma (< 80% of predicted) Less than Very Poor CRF is categorized as fun relative VO ₂ max for age & sex ension (HI): per AHA & AAP guidelines Normal Elevated/Pre-HTN Stage 1 Stage 1 Stage 2 in Systolic Performance*: current or by history	x for	age & sex al disability based on patient has undergone (if patient has 2 Tane transplants patient score would be 2) No Autologous/Tandem	dem 0 1
Ca	Hypert	Good-Superior CRF based on relative VO ₂ ma (> 80% of predicted value) Fair-Very Poor CRF based on relative VO ₂ ma (< 80% of predicted) Less than Very Poor CRF is categorized as fun relative VO ₂ max for age & sex ension (HTN): per AHA & AAP guidelines Normal Elevated/Per-HTN Stage 1 Stage 2 in Systolic Performance*: current or by history No	x for oction	age & sex al disability based on patient has undergone (if patient has 2 Tane transplants patient score would be 2) No Autologous/Tandem	dem 0 1
Ca	Hypert	Good-Superior CRF based on relative VO ₂ ma (> 80% of predicted value) Fair-Very Poor CRF based on relative VO ₂ ma (< 80% of predicted) Less than Very Poor CRF is categorized as fun relative VO ₂ max for age & sex ension (HI): per AHA & AAP guidelines Normal Elevated/Pre-HTN Stage 1 Stage 1 Stage 2 in Systolic Performance*: current or by history	x for	age & sex al disability based on patient has undergone (if patient has 2 Tane transplants patient score would be 2) No Autologous/Tandem	dem 0 1
Ca	Hypert	Good-Superior CRF based on relative VO ₂ ma (> 80% of predicted value) Fair-Very Poor CRF based on relative VO ₂ ma (< 80% of predicted) Less than Very Poor CRF is categorized as fun relative VO ₂ max for age & sex ension (HTN): per AHA & AAP guidelines Normal Elevated/Pre-HTN Stage 1 Stage 2 in Systolic Performance*: current or by history No Yes	x for otion 0 0.5 1 3 0 1.5	age & sex al disability based on patient has undergone (if patient has 2 Tant transplants patient score would be 2) Autologous/Tandem Allogenic	dem 0 1
Ca	Hypert	Good-Superior CRF based on relative VO ₂ ma (> 80% of predicted value) Fair-Very Poor CRF based on relative VO ₂ ma (< 80% of predicted) Less than Very Poor CRF is categorized as fun relative VO ₂ max for age & sex ension (HTN): per AHA & AAP guidelines Normal Elevated/Per-HTN Stage 1 Stage 2 in Systolic Performance*: current or by history No	x for otion 0 0.5 1 3 0 1.5	age & sex al disability based on patient has undergone (if patient has 2 Tant transplants patient score would be 2) Autologous/Tandem Allogenic	dem 0 1
Ca	Hypert	Good-Superior CRF based on relative VO ₂ ma (> 80% of predicted value) Fair-Very Poor CRF based on relative VO ₂ ma (< 80% of predicted) Less than Very Poor CRF is categorized as fun relative VO ₂ max for age & sex ension (HTN): per AHA & AAP guidelines Normal Elevated/Pre-HTN Stage 1 Stage 2 is Systolic Performance*: current or by history No Yes Risk probability for developing c	x for otion 0 0.5 1 3 0 1.5	age & sex nal disability based on patient has undergone (if patient has 2 Tan transplants patient score would be 2) No Autologous/Tandem Allogenic toxicity	dem 0 1
Ca	Hypert	Good-Superior CRF based on relative VO ₂ ma (> 80% of predicted value) Fair-Very Poor CRF based on relative VO ₂ ma (< 80% of predicted) Less than Very Poor CRF is categorized as fun relative VO ₂ max for age & sex ension (HTN): per AHA & AAP guidelines Normal Elevated/re-HTN Stage 1 Stage 2 is Systolic Performance*: current or by history No Yes Risk probability for developing of Low Risk Moderate Risk	o o o.s 1 3 0 1.5 ardiac	age & sex hal disability based on patient has undergone (if patient has 2 Tank transplants patient score would be 2) □ No □ Autologous/Tandem □ Allogenic toxicity High Risk ≥11	dem 0 1

- 1. Left Ventricular Ejection Fraction (LVEF) less than normal for age AND/OR
- 2. Global Longitudinal Strain (GLS) less than normal for age AND/OR
- 3. Z score less than -2 OR
- 4. A decrease in EF of more than 10 percentage points from baseline


Created by: Olga H.Toro-Salazar MD, Tiffany Ruiz BSN, RN, CPN, CCRC, Andrea Orsey MD, MSCE, Eileen Gillan MD, Shailendra Upadhyay MD, Karen Rubin MD

CONTACTS: OLGA H TORO SALAZAR, MD | TIFFANY RUIZ BSN, RN, CPN, CCRC | ANDREA ORSEY, MD, MSCE | ILANA WAYNIK, MD

CLINICAL PATHWAY: Pediatric Cardio-Oncology Acute Cardiotoxicity **Primary and Secondary Prevention Strategies** Appendix B: Risk Stratification Tool

CONTACTS: OLIGA HITORO SALAZARI MOLITIEFANY RUIZIBSNI RNI CPNI CCRC LANDREA ORSEY MDI MSCE LILANA WAYNIKI MD

•

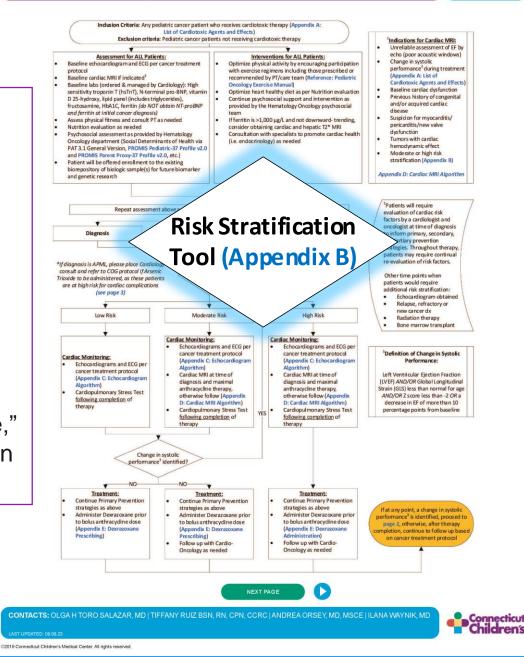
٠

٠

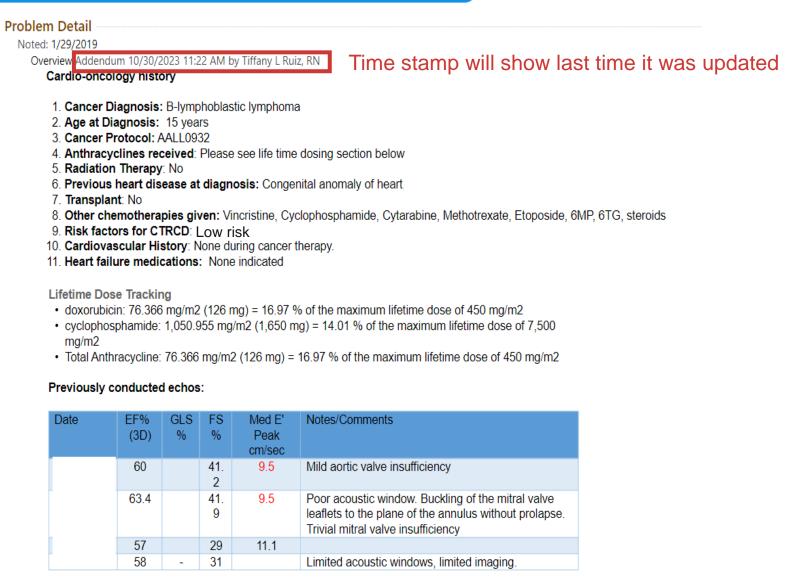
٠

٠

•


THIS PATHWAY SERVES AS A GUIDE AND DOES NOT REPLACE CLINICAL JUDGMENT.

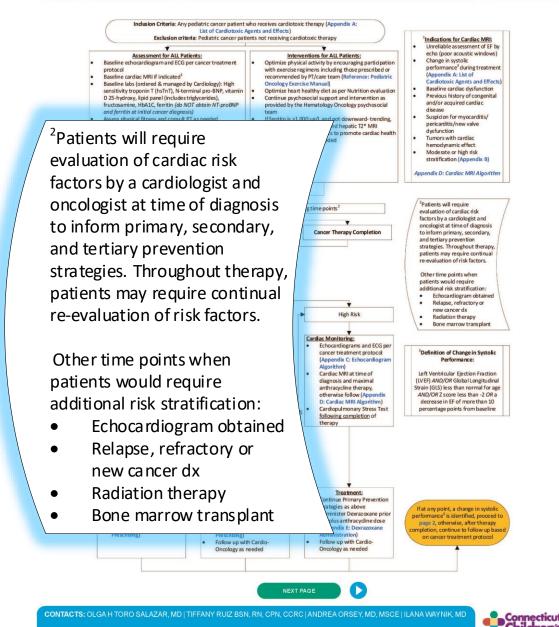
View Heart Failure Risk Details on Problem List


Under the <u>Problem List</u> the team will place a Cardiovascular and Mediastinum diagnosis for cardio-oncology patients.

✓ Problem List
 ✓ Problems from outside sources need reconciliation.
 ✓ Cardiovascular and Mediastinum
 ✓ ACC/AHA stage B heart failure

An Epic user can click on the problem "ACC/AHA heart failure stage," and details of this conditions can be seen. An example of this is seen on the next slide.

View Heart Failure Risk Details on Problem List

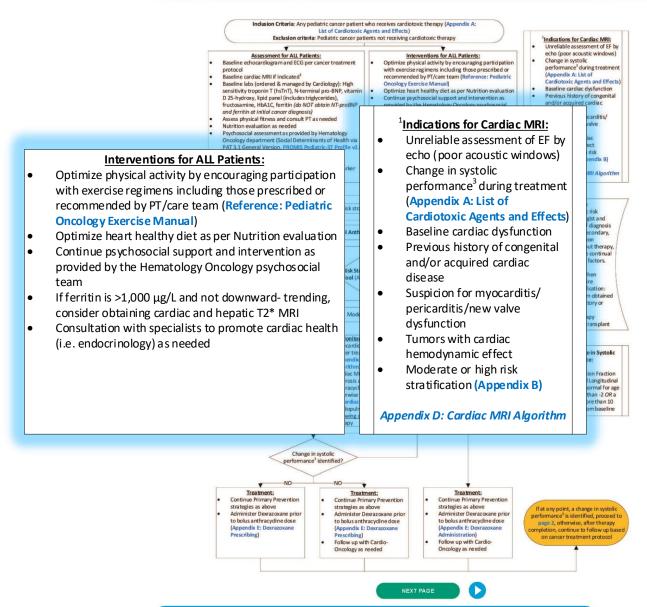


Previously conducted cardiac MRI (CMR): None previously performed

Previously conducted stress tests (CPET): None previously performed

Risk Stratification Tool Use

Of note, risk scoring also takes place at other time periods during the patients cancer treatment, not just at diagnosis, max anthracycline therapy, and therapy completion

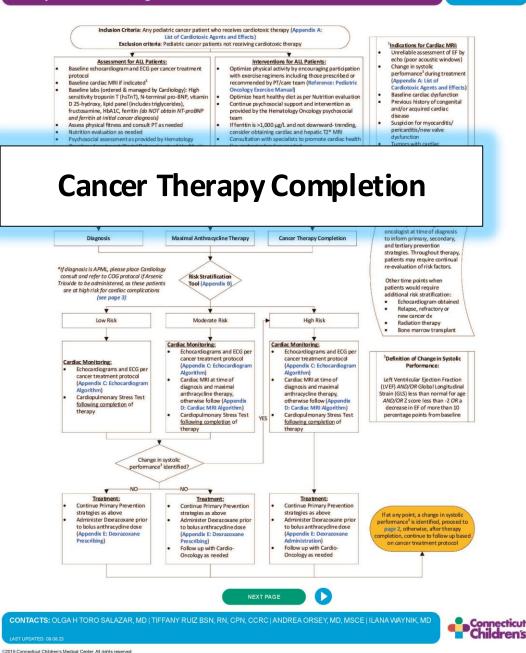


©2019 Connecticut Children's Medical Center. All rights reserved

Connecticut

Page 1: Primary Prevention Other Tips on Management

- Please note that "Interventions for ALL Patients" serves as a guide for clinicians
- A box on the right lists the indications for obtaining a cardiac MRI (CMR)



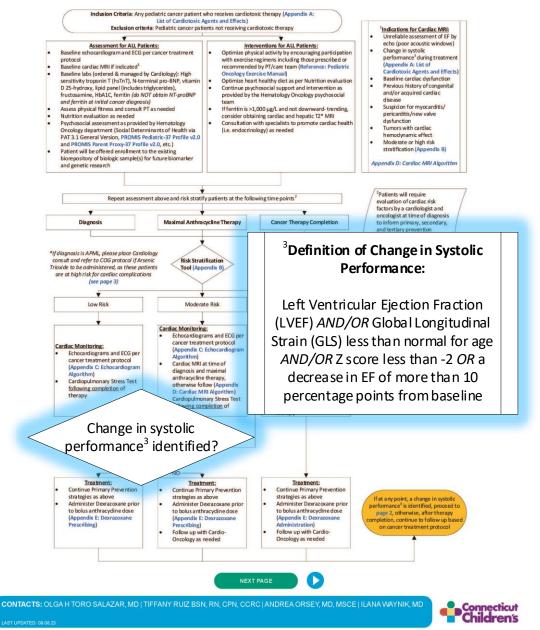
NTACTS: OLGA H TORO SALAZAR, MD | TIFFANY RUIZ BSN, RN, CPN, CCRC | ANDREA ORSEY, MD, MSCE | ILANA WAYNIK, MD

REPLACE CLINICAL

Page 1: Primary Prevention

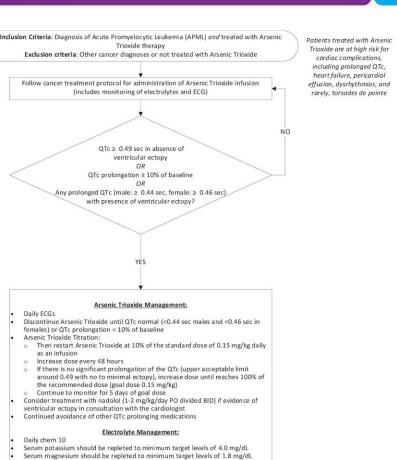
<u>Cancer therapy completion/End of</u> <u>Treatment (EOT)</u> = from the time the patient completes their cancer therapy up until 2 years post completion

Page 1: Primary Prevention


- A change in systolic performance, also known as CTRCD, is defined as the following:
 - EF < 55%
 - SF < 29%
 - GLS < -17% (more negative is good, less negative is bad)
 - Z-scores are located in the table within an echo report. Outliers are marked in red
 - A decrease in EF of more than <u>10 percentage</u> <u>points</u> from baseline
 - Example patient had a EF of 66% at one point. Then had a repeat echo which showed an EF of 56%.
 - Global longitudinal strain (GLS) is not always reported. If it is, it will be noted at the top part of the echo report under **Interpretation Summary**.

Interpretation Summary

1) Normal left ventricular size, well preserved global left ventricular systolic function estimated ejection fraction 58% by area length, 65.2% by 3D, shortening fraction 34%


- 2) Normal myocardial deformation parameters, GLS -19.9%, GCS -33.1%
- 3) Normal diastolic function, medial peak E velocity of 12.2 cm/s, lateral peak E velocity 18.2 cm/s
- 4) Thickness dimension ratio: 0.24
- 5) Normal end systolic wall stress estimated at 39.5 g/cm2.

CLINICAL PATHWAY: Pediatric Cardio-Oncology Acute Cardiotoxicity Primary and Secondary Prevention Strategies Primary Prevention Strategies

Page 3: Arsenic Trioxide Protocol

CLINICAL PATHWAY: Pediatric Cardio-Oncology Acute Cardiotoxicity Primary and Secondary Prevention Strategies Arsenic Trioxide Protocol

- Page 3 of the clinical pathwayPatients diagnosed with APML require
- arsenic trioxide for their cancer treatment and should be followed accordingly
- For additional guidance from cardiology, please order a cardiology consult in Epic
- At this time the cardio-oncology department does not have an inpatient component.

CONTACTS: OLGA H TORO SALAZAR, MD | TIFFANY RUIZ BSN, RN, CPN, CCRC | ANDREA ORSEY, MD, MSCE | ILANA WAYNIK, ME

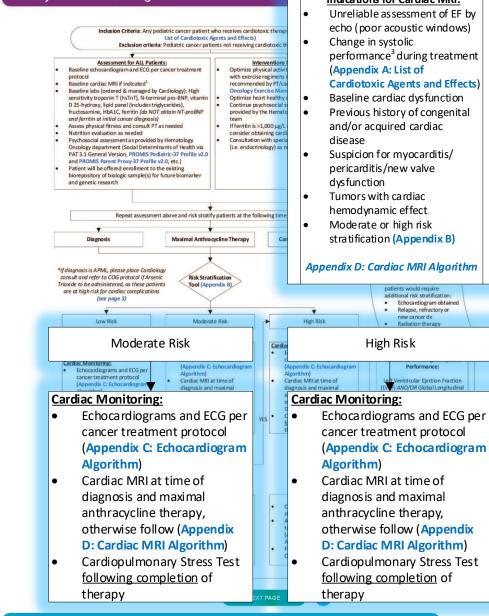
ST UPDATED: 09.08.23

©2019 Connecticut Children's Medical Center. All rights reserved

How to place an ambulatory referral to Cardio-Oncology

Class:	Internal Ref P						
Referral:	To dept:	CARD HTFD	CARD 0	DANB CARD DKH	CARD FARM CA	RD GLAS CARD HTFD	ARD SHEL
			CARD	VESTPORT CARE	NO ONC		
	To dept spec:	Cardiology	0				
	To provider:		0	9			
	Reason:	Specialty Servic		ty Services Require	d Second Opinion	Patient/Parent Preference	
	Priority:	0	P Routine	Urgent Electi	ve		
	Type:	Consultation	2				
is this an adu congenital p Comments:	atient?	No 2 +	insert SmartText	→ 5	* 4 5		
Referral:	Location/PO		Q	Q Q	Fr = of Vi	om:	० व
	Expiration Dat				= 01 VI		

Please make sure to select the Cardio Onc radio button under the department section, so the correct cardiologist receives the consult.


CLINICAL PATHWAY: Pediatric Cardio-Oncology Acute Cardiotoxicity Primary and Secondary Prevention Strategies Appendix C: Echocardiogram Algorithm

Appendix C: Echocardiogram Algorithm

- Page 1 of pathway indicates at which times to perform echocardiogram and links to this appendix
- Recalculate risk score stratification at time of every echocardiogram evaluation, which will include the trends of systolic performance (also referred to as CTRCD)

	1	
Echocardiogram is the preferred screening imaging modality for patients receiving cardiotaxic therapies	Initial Evaluation: Baseline echocardiogram at time of cancer diagnosis per cancer treatment protocol (all patients at this stage of treatment are considered to have stage A Heart Failure– Appendix G: Stages of Heart Failure) Consider integrated approach combining echocardiography and biomarkers: High sensitivity troponin T (hsTnT), N-terminal pro-BNP (NT-proBNP) Perform risk stratification ²	² Patients will require evaluation cardiac risk factors by a cardiologist oncologist at time of diagnosis to inf primary, secondary, and tertiary prevention strategies. Throughou therapy, patients may require contin re-evaluation of risk factors. (Appendix B: Risk Stratification To
	Follow-up Evaluations During Cancer Therapy: Follow-up echocardiograms are typically based upon cancer treatment protocol OR if indicated by dinical status (e.g. abnormal finding on echo, deterioration in clinical status such as sepsis or heart failure) Consider integrated approach combining echocardiography and biomarkers: hsTnT, NT-proBNP Perform risk stratification ² All patients should have echocardiograms at maximal anthrocycline therapy	
	•	
	 Follow-up Evaluations After Cancer Therapy Completion: All patients will have an echocardiogram at completion of cancer therapy Subsequent echocardiograms will be performed based upon cancer treatment protocol, previously noted myocardial dysfunction, or changing clinical status to inform heart failure therapy Consider integrated approach combining echocardiography and biomarkers: hsTnT, NT-proBNP Perform risk stratification² 	
	•	
Patients wi	 th significant change in systolic performance¹ during or after cancer ther long follow up for continual reassessment of cardiovascular diseas Ensure safe transition to adult care 	
	¹ Definition of Change in Systolic Performance:	
OR Z scol *A decrease i <55%, is co	ection Fraction (LVEF) AND/OR Global Longitudinal Strain (GLS) less than e less than -2 OR a decrease in EF of more than 10 percentage points fro n LVEF >10 percentoge points from baseline echocardiograms in serial nsidered clinically significant. A new LVEF <55% should be con pphy within 1-2 weeks, or initiate further investigations as clinically indice	m baseline* follow-up OR an LVEF firmed by a second

CLINICAL PATHWAY: Pediatric Cardio-Oncology Acute Cardiotoxicity **Primary and Secondary Prevention Strategies Primary Prevention Strategies** ¹Indications for Cardiac MRI:

Appendix D: Cardiac MRI (CMR) Algorithm

- CMR indicated in certain clinical scenarios that are outlined on page 1 of the clinical pathway
- For patients for whom CMR is indicated, appendix D outlines our CMR protocol, including how to obtain and when to repeat imaging

Note: At this time CMRs are only scheduled on Wednesdays and Fridays

CONTACTS: OLGA H TORO SALAZAR, MD I TIFFANY RUIZ BSN, RN, CPN, CCRC | ANDREA ORSEY, MD, MSCE | ILANA WAYNIK, MD

Connecticut **Children's**

©2019 Connecticut Children's Medical Center. All rights reserved

Appendix E: Dexrazoxane Dosing

CLINICAL PATHWAY: Pediatric Cardio-Oncology Acute Cardiotoxicity Primary and Secondary Prevention Strategies Appendix E: Dexrazoxane Dosing

Appendix E: Dexrazoxane Administration

Dexrazoxane used only with bolus dosing of anthracycline (NOT continuous infusion)

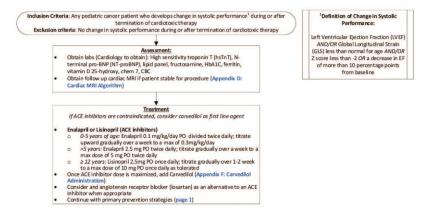
Dosing:

- Dexrazoxane dose is 5 times the DAUNOrubicin dose
- Dexrazoxane dose is 10 times the DOXOrubicin
- Dexrazoxane dose is 6.7 times the epiRUBicin dose
- Dexrazoxane dose is 50 times the IDArubicin dose
- Dexrazoxane dose is 40 times the mitoXANtrone dose

Administration:

- Administer immediately prior to anthracycline (AC)
 Must be within 30 minutes of beginning the AC infusion
- Administer IV over 15 minutes

- Dexrazoxane is a cardioprotectant drug that Connecticut Children's administers prior to every bolus anthracycline dose. This is not standard process world-wide
- Per the current COG Long-Term Follow-Up
 Guidelines version 6, the Doxorubicin conversions are indicated here.


CHEMOTHERAPY

Sec

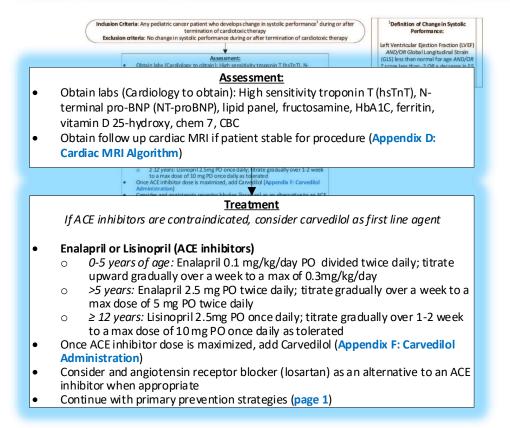
34

#	Therapeutic Exposure	Potential Late Effects		
	Anthracycline Antibiotics Daunorubicin Doxorubicin Epirubicin Idarubicin Mitoxantrone	Cardiac toxicity Cardiomyopathy Subclinical left ventricular Dexrazoxane dose is a 10:1 ratio per the doxorubicin		
	Dose Conversion Use the following formulas to convert to doxorubicin isotoxic equivalents prior calculating total cumulat anthracycline dose.	isotoxic equivalents mitoXANtrne dose is the exception to this rule (see Appendix E)		
	To estimate cumulative anthracycline dose in doxorubicin isotoxic equivalents 1.0 x (doxorubicin total dose) + 0.5 x (daunorubicin total dose) + 0.67 x (epirubicin total dose) + 5.0 x (idarubicin total dose) + 10.0 x (mitoxantrone total dose)			

Connecticut Children's

Page 2: Secondary Prevention Strategies

 For patients that have a change in systolic performance pathway users will be directed to page 2 of the clinical pathway



CONTACTS: OLGA H TORO SALAZAR, MD | TIFFANY RUIZ BSN, RN, CPN, CCRC | ANDREA ORSEY, MD, MSCE | ILANA WAYNIK, MD

Page 2: Secondary Prevention Strategies

- Some patients with CTRCD will qualify for heart failure treatment with an ACE inhibitor to restore their heart function
- Patients with abnormal renal function cannot receive an ACE inhibitor. Please check renal function PRIOR to starting this medication.
- Once ACE inhibitor dose is maximized add carvedilol (on next slide, we'll review carvedilol administration appendix)
- CMR is recommended for patients on this page of the pathway

CLINICAL PATHWAY: Pediatric Cardio-Oncology Acute Cardiotoxicity Primary and Secondary Prevention Strategies Secondary Prevention Strategies

CONTACTS: OLGA H TORO SALAZAR, MD | TIFFANY RUIZ BSN, RN, CPN, CCRC | ANDREA ORSEY, MD, MSCE | ILANA WAYNIK, MD

2019 Connecticut Children's Medical Center. All rights reserved.

Appendix F: Carvedilol Administration

Background for the use of carvedilol

Dosing assistance

Note: Carvedilol <u>can</u> be administered on days when Doxorubicin is administered

Initiation and titration monitoring .carvedilol SmartPhrase is available for all to utilize CLINICAL PATHWAY: Pediatric Cardio-Oncology Acute Cardiotoxicity Primary and Secondary Prevention Strategies Appendix F: Carvedilol Administration THIS PATHWAY SERVES AS A GUIDE AND DOES NOT REPLACE CLINICAL JUDGMENT.

Appendix F: Carvedilol Administration

Dosing for Secondary and Tertiary Prevention

- Evidence for Use:
 - Beta-blockers are used extensively to treat Heart Failure (HF) because of their ability to block the neurohormonal cascade that progresses to heart disease.
 - A 2015 study of 30 mice found that LVEF was significantly lower in those receiving doxorubicin without carvedilol than in those receiving doxorubicin with carvedilol¹.
 - Considerations for patients in active therapy¹:
 - Carvedilol administration for primary prevention of cardiotoxicity is not yet established as standard of care.
 - There is a known Risk X category warning (PGP interaction) for simultaneous use
 of carvedilol and doxorubicin which may increase the concentration of
 doxorubicin and may increase associated adverse effects. However, after
 thorough investigation, it is deemed appropriate to continue carvedilol while
 receiving doxorubicin for secondary and tertiary prevention of cardiotoxic
 effects.
- Titration of Dosing*:

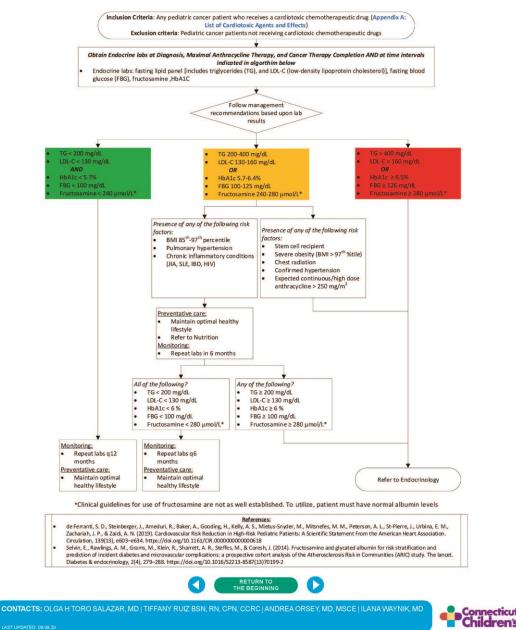
@2019 Connecticut Children's Medical Center. All rights reserved

- Age < 6 years old.
 - Initial: 0.05 mg/kg/dose (max 3.125 mg/dose) twice a day (BID)
 - Titrate up in 4 weeks to 0.1 mg/kg/dose
 - Titrate up in 4 weeks to 0.2 mg/kg/dose
 - Titrate up in 4 weeks to 0.35 mg/kg/dose (max 6.25 mg/dose)
- Age \geq 6 years old:
 - Initial: 3.125 mg BID
 - Then titrate as follows every 4 weeks :
 - 1. 3.125 mg BID
 - 2. 6.25 mg BID (Max dose <12 years of age)
 - 3. 9.375 mg BID
 - 4. 12.5 mg BID
 - 5. 18.75 mg BID
 - 6. 25 mg BID (Max dose over 18 years)

*If systolic performance is back to baseline no need to further titrate carvedilol

- Assessment recommendations for the outpatient setting
 - Initiation/dose titration of carvedilol to be conducted in the outpatient setting.
 - For titration, patients will be instructed to take their daily carvedilol dose the evening prior to their clinic visit, and to refrain from taking the medication the morning of their visit.
 - Monitoring recommendations: Baseline blood pressure and heart rate pre-dose, and then obtain at 30-minute intervals x 3 after dose administered (30 min, 60 min, and 90 min).

ACTS: OLGA H TORO SALAZAR, MD | TIFFANY RUIZ BSN, RN, CPN, CCRC | ANDREA ORSEY, MD, MSCE | ILANA WAYNIK



Appendix H: Endocrinology Lab Algorithm

- As part of primary prevention, endocrine labs are obtained throughout treatment as indicated on page 1
- The algorithm on appendix H outlines the actions that need to take place based upon these lab results

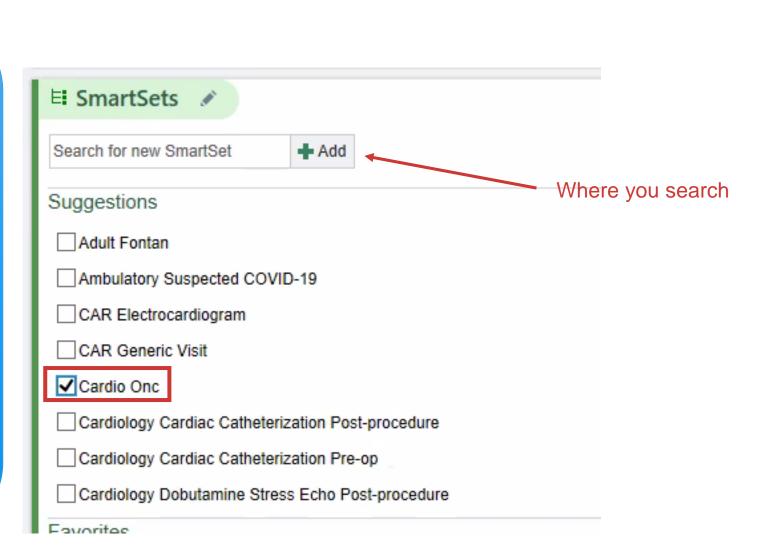
Green = Endocrinology labs within normal range Yellow = Endocrinology labs slightly elevated \rightarrow suggested diet modification and monitoring **Red** = Endocrinology labs very elevated \rightarrow refer to endocrinology

CLINICAL PATHWAY: Pediatric Cardio-Oncology Acute Cardiotoxicity Primary and Secondary Prevention Strategies Appendix H: Endocrinology Lab Algorithm

©2019 Connecticut Children's Medical Center. All rights reserved.

Use of Order Panel

- This order panel is intended for ordering the cardio-oncology labs
- Available in Epic and can be accessed by Cardiology and Cardio-Oncology only in ambulatory settings


☐ Procedures						
	Name	Frequency	Туре	Px Code	Pref List	
	CARDIO ONC LAB PANEL		Proc Panel	O2105623600	CCAMB CARD LABS	
☆	Simple Cardio Stress Test		PFT	PFT47	CCAMB CARD STRESS TESTS	
	Ambulatory Referral to Cardiology-External		Referral	REF12	CCAMB CARD REFERRALS	
	Ambulatory referral to Cardiovascular Surgery (aka CARDIOLOGY)		Referral	REF14	CCAMB CARD REFERRALS	
	PT Multidisciplinary Clinic - PT Eval and Treat (Cardio Onc)		PT	PT60	CCAMB CARD REFERRALS	

	N	
	k,	
	k}	
Cardiomyonathy		Primary Dy
Cardiomyopathy	↓ Date	Primary Dx
		Primary Dx
Cardiomyopathy		Primary Dx

cardiology provider use when managing a patient during an

This SmartSet is intended for

- This can be accessed by Cardiology and Cardio-Oncology by <u>selecting</u> the <u>SmartSet</u> or <u>searching</u> for it
- SmartSet includes templates for provider notes, orders, visit diagnoses, NYHA symptoms, commonly prescribed medications, etc.

Use of Smart Set

office visit

Quality Metrics

- Percentage of eligible patients managed appropriately per pathway
- Percentage of patients that have labs ordered as indicated per pathway

 If abnormal endocrine labs, percentage of patients with endocrine referral
- Percentage of patients that have physical therapy assessments performed
- Percentage of patients that have nutrition assessments performed
- Percentage of patients that have psychosocial assessment performed
- Percentage of patients with new cancer diagnosis that receive transitional education
- Percentage of patients that have risk scores performed as indicated per pathway
- Percentage of patients that have CTRCD identified via echo or CMR within a week of time indicated per pathway
 - If abnormal heart function:
 - -Percentage of patients with CTRCD initiated on heart failure treatment
 - -Average time to initiation of heart failure treatment

Pathway Contacts

- Tiffany Berthod, BSN, RN, CPN, CCRC o Cardio-Oncology
- Andrea Orsey, MD, MSCE Hematology/Oncology
- Ilana Waynik, MD

 Pediatric Hospital Medicine
 Clinical Effectiveness

Cardio-oncology team members we'd like to recognize that assisted with the pathway!

- Lauren Ayr-Volta, Hematology/Oncology
- Cem Demirci, Endocrinology
- Karina Engelke, Hematology/Oncology
- Michael Isakoff, Hematology/Oncology
- Mary Keller, Hematology/Oncology
- Raymond Lorenzoni, Cardiology
- Andrea Orsey, Hematology/Oncology
- Victoria Pohl, Hematology/Oncology
- Karen Rubin, Chief Clinical Transformation Officer
- Tiffany Ruiz, Cardio-Oncology
- Olga Salazar, Cardiology
- Sunitha Sura, Endocrinology
- Shailendra Upadhyay, Cardiology
- Irfan Warsy, Cardiology
- Ilana Waynik, Director Clinical Effectiveness

We couldn't have done this without you all!

Thank you!

- Armenian, S. H., Gelehrter, S. K., & Chow, E. J. (2012). Strategies to prevent anthracycline-related congestive heart failure in survivors of childhood cancer. Cardiol Res Pract, 2012, 713294. <u>https://doi.org/10.1155/2012/713294</u>
- Beavers, C. J., Rodgers, J. E., Bagnola, A. J., Beckie, T. M., Campia, U., Di Palo, K. E., Okwuosa, T. M., Przespolewski, E. R., & Dent, S. (2022). Cardio-Oncology Drug Interactions: A Scientific Statement From the American Heart Association. *Circulation*, 145(15), e811-e838. https://doi.org/10.1161/cir.00000000001056
- Beck, T. C., Arhontoulis, D. C., Morningstar, J. E., Hyams, N., Stoddard, A., Springs, K., Mukherjee, R., Helke, K., Guo, L., Moore, K., Gensemer, C., Biggs, R., Petrucci, T., Kwon, J., Stayer, K., Koren, N., Harvey, A., Holman, H., Dunne, J., . . . Norris, R. A. (2022). Cellular and Molecular Mechanisms of MEK1 Inhibitor-Induced Cardiotoxicity. JACC CardioOncol, 4(4), 535-548. <u>https://doi.org/10.1016/j.jaccao.2022.07.009</u>
- Blair, S. N., Kohl, H. W., 3rd, Paffenbarger, R. S., Jr., Clark, D. G., Cooper, K. H., & Gibbons, L. W. (1989). Physical fitness and all-cause mortality. A prospective study of healthy men and women. Jama, 262(17), 2395-2401. <u>https://doi.org/10.1001/jama.262.17.2395</u>
- Bosch, X., Rovira, M., Sitges, M., Domènech, A., Ortiz-Pérez, J. T., de Caralt, T. M., Morales-Ruiz, M., Perea, R. J., Monzó, M., & Esteve, J. (2013). Enalapril and carvedilol for preventing chemotherapy-induced left ventricular systolic dysfunction in patients with malignant hemopathies: the OVERCOME trial (preventiOn of left Ventricular dysfunction with Enalapril and caRvedilol in patients submitted to intensive ChemOtherapy for the treatment of Malignant hEmopathies). J Am Coll Cardiol, 61(23), 2355-2362. https://doi.org/10.1016/j.jacc.2013.02.072
- Butel-Simoes, L. E., Haw, T. J., Williams, T., Sritharan, S., Gadre, P., Herrmann, S. M., Herrmann, J., Ngo, D. T. M., & Sverdlov, A. L. (2023). Established and Emerging Cancer Therapies and Cardiovascular System: Focus on Hypertension-Mechanisms and Mitigation. *Hypertension*, 80(4), 685-710. <u>https://doi.org/10.1161/hypertensionaha.122.17947</u>
- Campbell, K. L., Winters-Stone, K. M., Wiskemann, J., May, A. M., Schwartz, A. L., Courneya, K. S., Zucker, D. S., Matthews, C. E., Ligibel, J. A., Gerber, L. H., Morris, G. S., Patel, A. V., Hue, T. F., Perna, F. M., & Schmitz, K. H. (2019). Exercise Guidelines for Cancer Survivors: Consensus Statement from International Multidisciplinary Roundtable. *Med Sci Sports Exerc*, 51(11), 2375-2390. <u>https://doi.org/10.1249/mss.00000000002116</u>
- Cardinale, D., Colombo, A., Lamantia, G., Colombo, N., Civelli, M., De Giacomi, G., Rubino, M., Veglia, F., Fiorentini, C., & Cipolla, C. M. (2010). Anthracycline-induced cardiomyopathy: clinical relevance and response to pharmacologic therapy. J Am Coll Cardiol, 55(3), 213-220. https://doi.org/10.1016/j.jacc.2009.03.095
- Chaput, J. P., Willumsen, J., Bull, F., Chou, R., Ekelund, U., Firth, J., Jago, R., Ortega, F. B., & Katzmarzyk, P. T. (2020). 2020 WHO guidelines on physical activity and sedentary behaviour for children and adolescents aged 5-17 years: summary of the evidence. Int J Behav Nutr Phys Act, 17(1), 141. <u>https://doi.org/10.1186/s12966-020-01037-z</u>

- Chen, Y. L., Chung, S. Y., Chai, H. T., Chen, C. H., Liu, C. F., Chen, Y. L., Huang, T. H., Zhen, Y. Y., Sung, P. H., Sun, C. K., Chua, S., Lu, H. I., Lee, F. Y., Sheu, J. J., & Yip, H. K. (2015). Early Administration of Carvedilol Protected against Doxorubicin-Induced Cardiomyopathy. J Pharmacol Exp Ther, 355(3), 516-527. <u>https://doi.org/10.1124/jpet.115.225375</u>
- Cheung, A. T., Li, W. H. C., Ho, L. L. K., Ho, K. Y., Chan, G. C. F., & Chung, J. O. K. (2021). Physical activity for pediatric cancer survivors: a systematic review of randomized controlled trials. J Cancer Surviv, 15(6), 876-889. <u>https://doi.org/10.1007/s11764-020-00981-w</u>
- Chovanec, J., Chovanec, M., & Mego, M. (2020). Levels of NT-proBNP and Troponin T in Cancer Patients Mini-Review. *Klin Onkol*, *33*(3), 171-176. <u>https://doi.org/10.14735/amko2020171</u> (Hladiny NT-proBNP a troponínu T u onkologických pacientov - stručný prehľad.)
- de Baat, E. C., Feijen, E. A. M., Reulen, R. C., Allodji, R. S., Bagnasco, F., Bardi, E., Belle, F. N., Byrne, J., van Dalen, E. C., Debiche, G., Diallo, I., Grabow, D., Hjorth, L., Jankovic, M., Kuehni, C. E., Levitt, G., Llanas, D., Loonen, J., Zaletel, L. Z., . . . Kremer, L. C. M. (2023). Risk Factors for Heart Failure Among Pan-European Childhood Cancer Survivors: A PanCareSurFup and ProCardio Cohort and Nested Case-Control Study. J Clin Oncol, 41(1), 96-106. <u>https://doi.org/10.1200/jco.21.02944</u>
- de Ferranti, S. D., Steinberger, J., Ameduri, R., Baker, A., Gooding, H., Kelly, A. S., Mietus-Snyder, M., Mitsnefes, M. M., Peterson, A. L., St-Pierre, J., Urbina, E. M., Zachariah, J. P., & Zaidi, A. N. (2019). Cardiovascular Risk Reduction in High-Risk Pediatric Patients: A Scientific Statement From the American Heart Association. *Circulation*, 139(13), e603-e634. https://doi.org/10.1161/cir.00000000000618
- Fernandes, T., Baraúna, V. G., Negrão, C. E., Phillips, M. I., & Oliveira, E. M. (2015). Aerobic exercise training promotes physiological cardiac remodeling involving a set of microRNAs. Am J Physiol Heart Circ Physiol, 309(4), H543-552. <u>https://doi.org/10.1152/ajpheart.00899.2014</u>
- Foulkes, S. J., Howden, E. J., Haykowsky, M. J., Antill, Y., Salim, A., Nightingale, S. S., Loi, S., Claus, P., Janssens, K., Mitchell, A. M., Wright, L., Costello, B. T., Lindqvist, A., Burnham, L., Wallace, I., Daly, R. M., Fraser, S. F., & La Gerche, A. (2023). Exercise for the Prevention of Anthracycline-Induced Functional Disability and Cardiac Dysfunction: The BREXIT Study. *Circulation*, 147(7), 532-545. <u>https://doi.org/10.1161/circulationaha.122.062814</u>
- Glen, C., Tan, Y. Y., Waterston, A., Evans, T. R. J., Jones, R. J., Petrie, M. C., & Lang, N. N. (2022). Mechanistic and Clinical Overview Cardiovascular Toxicity of BRAF and MEK Inhibitors: JACC: CardioOncology State-of-the-Art Review. JACC CardioOncol, 4(1), 1-18. https://doi.org/10.1016/j.jaccao.2022.01.096

- Groarke, J. D., Nguyen, P. L., Nohria, A., Ferrari, R., Cheng, S., & Moslehi, J. (2014). Cardiovascular complications of radiation therapy for thoracic malignancies: the role for non-invasive imaging for detection of cardiovascular disease. *Eur Heart J*, 35(10), 612-623. <u>https://doi.org/10.1093/eurheartj/eht114</u>
- Groarke, J. D., Payne, D. L., Claggett, B., Mehra, M. R., Gong, J., Caron, J., Mahmood, S. S., Hainer, J., Neilan, T. G., Partridge, A. H., Di Carli, M., Jones, L. W., & Nohria, A. (2020). Association of post-diagnosis cardiorespiratory fitness with cause-specific mortality in cancer. Eur Heart J Qual Care Clin Outcomes, 6(4), 315-322. <u>https://doi.org/10.1093/ehjqcco/qcaa015</u>
- Gupta, V., Kumar Singh, S., Agrawal, V., & Bali Singh, T. (2018). Role of ACE inhibitors in anthracycline-induced cardiotoxicity: A randomized, double-blind, placebo-controlled trial. *Pediatr Blood Cancer*, 65(11), e27308. <u>https://doi.org/10.1002/pbc.27308</u>
- Hamer, M., Ingle, L., Carroll, S., & Stamatakis, E. (2012). Physical activity and cardiovascular mortality risk: possible protective mechanisms? Med Sci Sports Exerc, 44(1), 84-88. <u>https://doi.org/10.1249/MSS.0b013e3182251077</u>
- Harries, I., Liang, K., Williams, M., Berlot, B., Biglino, G., Lancellotti, P., Plana, J. C., & Bucciarelli-Ducci, C. (2020). Magnetic Resonance Imaging to Detect Cardiovascular Effects of Cancer Therapy: JACC CardioOncology State-of-the-Art Review. JACC CardioOncol, 2(2), 270-292. <u>https://doi.org/10.1016/j.jaccao.2020.04.011</u>
- Herrmann, J. (2020). Adverse cardiac effects of cancer therapies: cardiotoxicity and arrhythmia. Nat Rev Cardiol, 17(8), 474-502. https://doi.org/10.1038/s41569-020-0348-1
- Hoffmann, T. C., Maher, C. G., Briffa, T., Sherrington, C., Bennell, K., Alison, J., Singh, M. F., & Glasziou, P. P. (2016). Prescribing exercise interventions for patients with chronic conditions. *Cmaj*, 188(7), 510-518. <u>https://doi.org/10.1503/cmaj.150684</u>
- Jeong, S. W., Kim, S. H., Kang, S. H., Kim, H. J., Yoon, C. H., Youn, T. J., & Chae, I. H. (2019). Mortality reduction with physical activity in patients with and without cardiovascular disease. *Eur Heart J*, 40(43), 3547-3555. <u>https://doi.org/10.1093/eurheartj/ehz564</u>

- Kavanagh, T., Mertens, D. J., Hamm, L. F., Beyene, J., Kennedy, J., Corey, P., & Shephard, R. J. (2003). Peak oxygen intake and cardiac mortality in women referred for cardiac rehabilitation. J Am Coll Cardiol, 42(12), 2139-2143. <u>https://doi.org/10.1016/j.jacc.2003.07.028</u>
- Kodama, S., Saito, K., Tanaka, S., Maki, M., Yachi, Y., Asumi, M., Sugawara, A., Totsuka, K., Shimano, H., Ohashi, Y., Yamada, N., & Sone, H. (2009). Cardiorespiratory fitness as a quantitative predictor of all-cause mortality and cardiovascular events in healthy men and women: a meta-analysis. Jama, 301(19), 2024-2035. <u>https://doi.org/10.1001/jama.2009.681</u>
- Korosoglou, G., Giusca, S., Montenbruck, M., Patel, A. R., Lapinskas, T., Götze, C., Zieschang, V., Al-Tabatabaee, S., Pieske, B., Florian, A., Erley, J., Katus, H. A., Kelle, S., & Steen, H. (2021). Fast Strain-Encoded Cardiac Magnetic Resonance for Diagnostic Classification and Risk Stratification of Heart Failure Patients. JACC Cardiovasc Imaging, 14(6), 1177-1188. <u>https://doi.org/10.1016/j.jcmg.2020.10.024</u>
- Lipshultz, S. E., Rifai, N., Dalton, V. M., Levy, D. E., Silverman, L. B., Lipsitz, S. R., Colan, S. D., Asselin, B. L., Barr, R. D., Clavell, L. A., Hurwitz, C. A., Moghrabi, A., Samson, Y., Schorin, M. A., Gelber, R. D., & Sallan, S. E. (2004). The effect of dexrazoxane on myocardial injury in doxorubicin-treated children with acute lymphoblastic leukemia. *N Engl J Med*, 351(2), 145-153. https://doi.org/10.1056/NEJMoa035153
- Lyon, A. R., López-Fernández, T., Couch, L. S., Asteggiano, R., Aznar, M. C., Bergler-Klein, J., Boriani, G., Cardinale, D., Cordoba, R., Cosyns, B., Cutter, D. J., de Azambuja, E., de Boer, R. A., Dent, S. F., Farmakis, D., Gevaert, S. A., Gorog, D. A., Herrmann, J., Lenihan, D., . . . van der Pal, H. J. H. (2022). 2022 ESC Guidelines on cardio-oncology developed in collaboration with the European Hematology Association (EHA), the European Society for Therapeutic Radiology and Oncology (ESTRO) and the International Cardio-Oncology Society (IC-OS). Eur Heart J, 43(41), 4229-4361. https://doi.org/10.1093/eurheartj/ehac244
- Patel, A. V., Friedenreich, C. M., Moore, S. C., Hayes, S. C., Silver, J. K., Campbell, K. L., Winters-Stone, K., Gerber, L. H., George, S. M., Fulton, J. E., Denlinger, C., Morris, G. S., Hue, T., Schmitz, K. H., & Matthews, C. E. (2019). American College of Sports Medicine Roundtable Report on Physical Activity, Sedentary Behavior, and Cancer Prevention and Control. *Med Sci Sports Exerc*, 51(11), 2391-2402. https://doi.org/10.1249/mss.00000000002117

- Piña, I. L., Apstein, C. S., Balady, G. J., Belardinelli, R., Chaitman, B. R., Duscha, B. D., Fletcher, B. J., Fleg, J. L., Myers, J. N., & Sullivan, M. J. (2003). Exercise and heart failure: A statement from the American Heart Association Committee on exercise, rehabilitation, and prevention. *Circulation*, 107(8), 1210-1225. <u>https://doi.org/10.1161/01.cir.0000055013.92097.40</u>
- Plana, J. C., Thavendiranathan, P., Bucciarelli-Ducci, C., & Lancellotti, P. (2018). Multi-Modality Imaging in the Assessment of Cardiovascular Toxicity in the Cancer Patient. *JACC Cardiovasc Imaging*, 11(8), 1173-1186. <u>https://doi.org/10.1016/j.jcmg.2018.06.003</u>
- Ross, R., Blair, S. N., Arena, R., Church, T. S., Després, J. P., Franklin, B. A., Haskell, W. L., Kaminsky, L. A., Levine, B. D., Lavie, C. J., Myers, J., Niebauer, J., Sallis, R., Sawada, S. S., Sui, X., & Wisløff, U. (2016). Importance of Assessing Cardiorespiratory Fitness in Clinical Practice: A Case for Fitness as a Clinical Vital Sign: A Scientific Statement From the American Heart Association. *Circulation*, 134(24), e653-e699. <u>https://doi.org/10.1161/cir.0000000000000461</u>
- Scott, J. M., Lakoski, S., Mackey, J. R., Douglas, P. S., Haykowsky, M. J., & Jones, L. W. (2013). The potential role of aerobic exercise to modulate cardiotoxicity of molecularly targeted cancer therapeutics. *Oncologist*, 18(2), 221-231. <u>https://doi.org/10.1634/theoncologist.2012-0226</u>
- Selvin, E., Rawlings, A. M., Grams, M., Klein, R., Sharrett, A. R., Steffes, M., & Coresh, J. (2014). Fructosamine and glycated albumin for risk stratification and prediction of incident diabetes and microvascular complications: a prospective cohort analysis of the Atherosclerosis Risk in Communities (ARIC) study. Lancet Diabetes Endocrinol, 2(4), 279-288. <u>https://doi.org/10.1016/s2213-8587(13)70199-2</u>
- Sepe, D. M., Ginsberg, J. P., & Balis, F. M. (2010). Dexrazoxane as a cardioprotectant in children receiving anthracyclines. Oncologist, 15(11), 1220-1226. https://doi.org/10.1634/theoncologist.2010-0162
- Testi, A. M., Pession, A., Diverio, D., Grimwade, D., Gibson, B., de Azevedo, A. C., Moran, L., Leverger, G., Elitzur, S., Hasle, H., van der Werff ten Bosch, J., Smith, O., De Rosa, M., Piciocchi, A., Lo Coco, F., Foà, R., Locatelli, F., & Kaspers, G. J. L. (2018). Risk-adapted treatment of acute promyelocytic leukemia: results from the International Consortium for Childhood APL. *Blood*, 132(4), 405-412. <u>https://doi.org/10.1182/blood-2018-03-836528</u>
- Tonorezos, E. S., Snell, P. G., Moskowitz, C. S., Eshelman-Kent, D. A., Liu, J. E., Chou, J. F., Smith, S. M., Dunn, A. L., Church, T. S., & Oeffinger, K. C. (2013). Reduced cardiorespiratory fitness in adult survivors of childhood acute lymphoblastic leukemia. *Pediatr Blood Cancer*, 60(8), 1358-1364. https://doi.org/10.1002/pbc.24492

- Toro-Salazar, O. H., Ferranti, J., Lorenzoni, R., Walling, S., Mazur, W., Raman, S. V., Davey, B. T., Gillan, E., O'Loughlin, M., Klas, B., & Hor, K. N. (2016). Feasibility of Echocardiographic Techniques to Detect Subclinical Cancer Therapeutics-Related Cardiac Dysfunction among High-Dose Patients When Compared with Cardiac Magnetic Resonance Imaging. J Am Soc Echocardiogr, 29(2), 119-131. <u>https://doi.org/10.1016/j.echo.2015.10.008</u>
- Toro-Salazar, O. H., Gillan, E., Ferranti, J., Orsey, A., Rubin, K., Upadhyay, S., Mazur, W., & Hor, K. N. (2015). Effect of myocardial dysfunction in cardiac morbidity and all cause mortality in childhood cancer subjects treated with anthracycline therapy. *Cardiooncology*, 1(1), 1. <u>https://doi.org/10.1186/s40959-015-0005-8</u>
- Tukenova, M., Guibout, C., Oberlin, O., Doyon, F., Mousannif, A., Haddy, N., Guérin, S., Pacquement, H., Aouba, A., Hawkins, M., Winter, D., Bourhis, J., Lefkopoulos, D., Diallo, I., & de Vathaire, F. (2010). Role of cancer treatment in long-term overall and cardiovascular mortality after childhood cancer. J Clin Oncol, 28(8), 1308-1315. <u>https://doi.org/10.1200/jco.2008.20.2267</u>
- Unnikrishnan, D., Dutcher, J. P., Varshneya, N., Lucariello, R., Api, M., Garl, S., Wiernik, P. H., & Chiaramida, S. (2001). Torsades de pointes in 3 patients with leukemia treated with arsenic trioxide. *Blood*, 97(5), 1514-1516. <u>https://doi.org/10.1182/blood.v97.5.1514</u>
- van der Schoot, G. G. F., Ormel, H. L., Westerink, N. L., May, A. M., Elias, S. G., Hummel, Y. M., Lefrandt, J. D., van der Meer, P., van Melle, J. P., Poppema, B. J., Stel, J. M. A., van der Velden, A. W. G., Vrieling, A. H., Wempe, J. B., Ten Wolde, M. G., Nijland, M., de Vries, E. G. E., Gietema, J. A., & Walenkamp, A. M. E. (2022). Optimal Timing of a Physical Exercise Intervention to Improve Cardiorespiratory Fitness: During or After Chemotherapy. JACC CardioOncol, 4(4), 491-503. <u>https://doi.org/10.1016/j.jaccao.2022.07.006</u>
- Wanderley, M. R. B., Jr., Ávila, M. S., Fernandes-Silva, M. M., Cruz, F. D. D., Brandão, S. M. G., Rigaud, V. O. C., Hajjar, L. A., Filho, R. K., Cunha-Neto, E., Bocchi, E. A., & Ayub-Ferreira, S. M. (2022). Plasma biomarkers reflecting high oxidative stress in the prediction of myocardial injury due to anthracycline chemotherapy and the effect of carvedilol: insights from the CECCY Trial. Oncotorget, 13, 214-223. <u>https://doi.org/10.18632/oncotarget.28182</u>
- Wenningmann, N., Knapp, M., Ande, A., Vaidya, T. R., & Ait-Oudhia, S. (2019). Insights into Doxorubicin-induced Cardiotoxicity: Molecular Mechanisms, Preventive Strategies, and Early Monitoring. *Mol Pharmacol*, 96(2), 219-232. <u>https://doi.org/10.1124/mol.119.115725</u>
- Winter, C., Müller, C., Hoffmann, C., Boos, J., & Rosenbaum, D. (2010). Physical activity and childhood cancer. Pediatr Blood Cancer, 54(4), 501-510. <u>https://doi.org/10.1002/pbc.22271</u>
- Zukkoor Zorn, S., & Thohan, V. (2018). Drug-Drug Interactions of Common Cardiac Medications and Chemotherapeutic Agents. American College of Cardiology. <u>https://www.acc.org/latest-in-cardiology/articles/2018/12/21/09/52/drug-drug-interactions-of-common-</u> cardiac-medications-and-chemotherapeutic-agents

About Connecticut Children's Pathways Program

Clinical pathways guide the management of patients to optimize consistent use of evidence-based practice. Clinical pathways have been shown to improve guideline adherence and quality outcomes, while decreasing length of stay and cost. Here at Connecticut Children's, our Clinical Pathways Program aims to deliver evidence-based, high value care to the greatest number of children in a diversity of patient settings. These pathways serve as a guide for providers and do not replace clinical judgment.